Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
EClinicalMedicine ; 56: 101823, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2178140

ABSTRACT

Background: Lipid nanoparticle (LNP) encapsulated self-amplifying RNA (saRNA) is well tolerated and immunogenic in SARS-CoV-2 seronegative and seropositive individuals aged 18-75. Methods: A phase 2a expanded safety and immunogenicity study of a saRNA SARS-CoV-2 vaccine candidate LNP-nCoVsaRNA, was conducted at participating centres in the UK between 10th August 2020 and 30th July 2021. Participants received 1 µg then 10 µg of LNP-nCoVsaRNA, ∼14 weeks apart. Solicited adverse events (AEs) were collected for one week post-each vaccine, and unsolicited AEs throughout. Binding and neutralisating anti-SARS-CoV-2 antibody raised in participant sera was measured by means of an anti-Spike (S) IgG ELISA, and SARS-CoV-2 pseudoneutralisation assay. (The trial is registered: ISRCTN17072692, EudraCT 2020-001646-20). Findings: 216 healthy individuals (median age 51 years) received 1.0 µg followed by 10.0 µg of the vaccine. 28/216 participants were either known to have previous SARS-CoV2 infection and/or were positive for anti-Spike (S) IgG at baseline. Reactogenicity was as expected based on the reactions following licensed COVID-19 vaccines, and there were no serious AEs related to vaccination. 80% of baseline SARS-CoV-2 naïve individuals (147/183) seroconverted two weeks post second immunization, irrespective of age (18-75); 56% (102/183) had detectable neutralising antibodies. Almost all (28/31) SARS-CoV-2 positive individuals had increased S IgG binding antibodies following their first 1.0 µg dose with a ≥0.5log10 increase in 71% (22/31). Interpretation: Encapsulated saRNA was well tolerated and immunogenic in adults aged 18-75 years. Seroconversion rates in antigen naïve were higher than those reported in our dose-ranging study. Further work is required to determine if this difference is related to a longer dosing interval (14 vs. 4 weeks) or dosing with 1.0 µg followed by 10.0 µg. Boosting of S IgG antibodies was observed with a single 1.0 µg injection in those with pre-existing immune responses. Funding: Grants and gifts from the Medical Research Council UKRI (MC_PC_19076), the National Institute for Health Research/Vaccine Task Force, Partners of Citadel and Citadel Securities, Sir Joseph Hotung Charitable Settlement, Jon Moulton Charity Trust, Pierre Andurand, and Restore the Earth.

2.
BMJ Open ; 12(9): e057717, 2022 Sep 06.
Article in English | MEDLINE | ID: covidwho-2020033

ABSTRACT

INTRODUCTION: The successful scale-up of a latent tuberculosis (TB) infection testing and treatment programme is essential to achieve TB elimination. However, poor adherence compromises its therapeutic effectiveness. Novel rifapentine-based regimens and treatment support based on behavioural science theory may improve treatment adherence and completion. METHODS AND ANALYSIS: A pragmatic multicentre, open-label, randomised controlled trial assessing the effect of novel short-course rifapentine-based regimens for TB prevention and additional theory-based treatment support on treatment adherence against standard-of-care. Participants aged between 16 and 65 who are eligible to start TB preventive therapy will be recruited in England. 920 participants will be randomised to one of six arms with allocation ratio of 5:5:6:6:6:6: daily isoniazid +rifampicin for 3 months (3HR), routine treatment support (control); 3HR, additional treatment support; weekly isoniazid +rifapentine for 3 months (3HP), routine treatment support; weekly 3HP, additional treatment support ; daily isoniazid +rifapentine for 1 month (1HP), routine treatment support; daily 1HP, additional treatment support. Additional treatment support comprises reminders using an electronic pillbox, a short animation, and leaflets based on the perceptions and practicalities approach. The primary outcome is adequate treatment adherence, defined as taking ≥90% of allocated doses within the pre-specified treatment period, measured by electronic pillboxes. Secondary outcomes include safety and TB incidence within 12 months. We will conduct process evaluation of the trial interventions and assess intervention acceptability and fidelity and mechanisms for effect and estimate the cost-effectiveness of novel regimens. The protocol was developed with patient and public involvement, which will continue throughout the trial. ETHICS AND DISSEMINATION: Ethics approval has been obtained from The National Health Service Health Research Authority (20/LO/1097). All participants will be required to provide written informed consent. We will share the results in peer-reviewed journals. TRIAL REGISTRATION NUMBER: EudraCT 2020-004444-29.


Subject(s)
Latent Tuberculosis , Rifampin , Adult , Humans , Adolescent , Young Adult , Middle Aged , Aged , Rifampin/therapeutic use , Latent Tuberculosis/drug therapy , Isoniazid/therapeutic use , Antitubercular Agents/therapeutic use , State Medicine , United Kingdom , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
3.
EClinicalMedicine ; 44: 101262, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1620636

ABSTRACT

BACKGROUND: Lipid nanoparticle (LNP) encapsulated self-amplifying RNA (saRNA) is a novel technology formulated as a low dose vaccine against COVID-19. METHODS: A phase I first-in-human dose-ranging trial of a saRNA COVID-19 vaccine candidate LNP-nCoVsaRNA, was conducted at Imperial Clinical Research Facility, and participating centres in London, UK, between 19th June to 28th October 2020. Participants received two intramuscular (IM) injections of LNP-nCoVsaRNA at six different dose levels, 0.1-10.0µg, given four weeks apart. An open-label dose escalation was followed by a dose evaluation. Solicited adverse events (AEs) were collected for one week from enrolment, with follow-up at regular intervals (1-8 weeks). The binding and neutralisation capacity of anti-SARS-CoV-2 antibody raised in participant sera was measured by means of an anti-Spike (S) IgG ELISA, immunoblot, SARS-CoV-2 pseudoneutralisation and wild type neutralisation assays. (The trial is registered: ISRCTN17072692, EudraCT 2020-001646-20). FINDINGS: 192 healthy individuals with no history or serological evidence of COVID-19, aged 18-45 years were enrolled. The vaccine was well tolerated with no serious adverse events related to vaccination. Seroconversion at week six whether measured by ELISA or immunoblot was related to dose (both p<0.001), ranging from 8% (3/39; 0.1µg) to 61% (14/23; 10.0µg) in ELISA and 46% (18/39; 0.3µg) to 87% (20/23; 5.0µg and 10.0µg) in a post-hoc immunoblot assay. Geometric mean (GM) anti-S IgG concentrations ranged from 74 (95% CI, 45-119) at 0.1µg to 1023 (468-2236) ng/mL at 5.0µg (p<0.001) and was not higher at 10.0µg. Neutralisation of SARS-CoV-2 by participant sera was measurable in 15% (6/39; 0.1µg) to 48% (11/23; 5.0µg) depending on dose level received. INTERPRETATION: Encapsulated saRNA is safe for clinical development, is immunogenic at low dose levels but failed to induce 100% seroconversion. Modifications to optimise humoral responses are required to realise its potential as an effective vaccine against SARS-CoV-2. FUNDING: This study was co-funded by grants and gifts from the Medical Research Council UKRI (MC_PC_19076), and the National Institute Health Research/Vaccine Task Force, Partners of Citadel and Citadel Securities, Sir Joseph Hotung Charitable Settlement, Jon Moulton Charity Trust, Pierre Andurand, Restore the Earth.

SELECTION OF CITATIONS
SEARCH DETAIL